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ABSTRACT

Generative adversarial networks have recently demonstrated
outstanding performance in neural vocoding outperforming
best autoregressive and flow-based models. In this paper,
we show that this success can be extended to other tasks of
conditional audio generation. In particular, building upon
HiFi vocoders, we propose a novel HiFi++ general frame-
work for bandwidth extension and speech enhancement. We
show that with the improved generator architecture, HiFi++
performs better or comparably with the state-of-the-art in
these tasks while spending significantly less computational
resources. The effectiveness of our approach is validated
through a series of extensive experiments.

Index Terms— speech enhancement, bandwidth exten-
sion

1. INTRODUCTION

The problem of conditional speech generation has great prac-
tical importance. The applications of conditional speech
generation include neural vocoding, bandwidth extension
(BWE), speech enhancement (SE, also referred to as speech
denoising), and many others. One recent success in the field
of conditional speech generation is related to the application
of generative adversarial networks [1, 2]. Particularly, it was
demonstrated that GAN-based vocoders could drastically out-
perform all publicly available neural vocoders in both quality
of generated speech and inference speed. In this work, we
adapt the HiFi model [2] to the bandwidth extension and
speech enhancement tasks by designing new generator.

The key contribution of this work is a novel HiFi++ gener-
ator architecture that allows to efficiently adapt the HiFi-GAN
framework to the BWE and SE problems. The proposed ar-
chitecture is based on the HiFi generator with new modules.
Namely, we introduce spectral preprocessing (SpectralUnet),
convolutional encoder-decoder network (WaveUNet) and
learnable spectral masking (SpectralMaskNet) to the gener-
ator’s architecture. Equipped with these modifications, our
generator can be successfully applied to the bandwidth exten-
sion and speech enhancement problems. As we demonstrate

through a series of extensive experiments, our model per-
forms on par with state-of-the-art in bandwidth extension and
speech enhancement tasks. The model is significantly more
lightweight than the examined counterparts while having
better or comparable quality.

2. BACKGROUND

Bandwidth extension Frequency bandwidth extension [3, 4]
(also known as audio super-resolution) can be viewed as a
realistic increase of signal sampling frequency. Speech band-
width or sampling rate may be truncated due to poor recording
devices or transmission channels. Therefore super-resolution
models are of significant practical relevance for telecommu-
nication.

For the given audio x = {xi}Ni=1 with the low sampling
rate s, a bandwidth extension model aims at restoring the
recording in high resolution y = {xi}N ·S/s

i=1 with the sampling
rate S (i.e., expand the effective frequency bandwidth). We
generate training and evaluation data by applying low-pass
filters to a high sample rate signal and then downsampling the
signal to the sampling rate s:

x = Resample(lowpass(y, s/2), s, S), (1)

where lowpass(·, s/2) means applying a low-pass filter with
the cutoff frequency s/2 (Nyquist frequency at the sampling
rate s), Resample(·, S, s) denotes downsampling the signal
from the sampling frequency S to the frequency s. Following
recent works [5, 3], we randomize low-pass filter type and
order during training for model robustness.
Speech enhancement Audio denoising [6, 7] is always a
major interest in audio processing community because of its
importance and difficulty. In this task, it is required to clean
the original signal (most often speech) from extraneous dis-
tortions. We use additive external noise as distortion. For-
mally speaking, given the noisy signal x = y + n the denois-
ing algorithm predicts the clean signal y, i.e. suppresses the
noise n.IC
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Fig. 1. HiFi++ architecture and training pipeline. The HiFi++ generator consists of the HiFi-like Upsampler and three intro-
duced modules SpectralUNet, WaveUNet and SpectralMaskNet (their sizes are in yellow boxes). The generator’s architecture
is identical for BWE and SE.

3. HIFI++

3.1. Adapting HiFi-GAN Generator For Bandwidth Ex-
tension and Speech Enhancement

In this paper, we propose a novel HiFi++ architecture that
adapts HiFi generator [2] to the SE and BWE problems by in-
troducing new modules: SpectralUNet, WaveUNet and Spec-
tralMaskNet (see Figure 1). The HiFi++ generator is based on
the HiFi part (V 2 version of HiFi-GAN generator) that takes
as an input the enriched mel-spectrogram representation by
the SpectralUNet and its output goes through postprocessing
modules: WaveUNet corrects the output waveform in time
domain while SpectralMaskNet cleans up it in frequency do-
main. We also tried to change the order of WaveUNet and
SpectralMaskNet modules and did not observe significant im-
provements. We describe the introduced modules in details in
the next paragraphs.
SpectralUNet We introduce the SpectralUNet module as the
initial part of the HiFi++ generator that takes the input mel-
spectogram (see Figure 1). The mel-spectrogram has a two-
dimensional structure and the two-dimensional convolutional
blocks of the SpectralUnet model are designed to facilitate
the work with this structure at the initial stage of converting
the mel-spectrogram into a waveform. The idea is to simplify
the task for the remaining part of the HiFi++ generator that
should transform this 2d representation to the 1d sequence.
We design the SpectralUNet module as UNet-like architecture
with 2d convolutions. This module also can be considered as
the preprocess part that prepares the input mel-spectrogram
by correcting and extracting from it the essential information
that is required for the desired task.
WaveUNet The WaveUNet module is placed after the HiFi
part (Upsampler) and takes several 1d sequences concate-
nated with the input waveform as an input. This module

operates directly on time domain and it can be considered as
a time domain postprocessing mechanism that improves the
output of the Upsampler and merges the predicted waveform
with the source one. The WaveUNet module is an instance of
the well-known architecture Wave-U-Net [8] which is a fully
convolutional 1D-UNet-like neural network. This module
outputs the 2d tensor which consists of m 1d sequences that
will be processed and merged to the output waveform by the
next SpectralMaskNet module.
SpectralMaskNet We introduce the SpectralMaskNet as the
final part of the generator which is a learnable spectral mask-
ing. It takes as an input the 2d tensor of m 1d sequences and
applies channel-wise short-time Fourier transform (STFT) to
this 2d tensor. Further, the SpectralUNet-like network takes
the amplitudes of the STFT output (in the case of vocoding it
takes also the output of SpectralUNet module concatenated)
to predict multiplicative factors for these amplitudes. The
concluding part consists of the inverse STFT of the modi-
fied spectrum (see Figure 1). Importantly, this process does
not change phases. The purpose of this module is to perform
frequency-domain postprocessing of the signal. We hypothe-
size that it is an efficient mechanism to remove artifacts and
noise in frequency domain from the output waveform in a
learnable way. Note that similar techniques have been used
in speech enhancement literature as a standalone solution [9].

3.2. Training objective

We use the multi-discriminator adversarial training frame-
work that is based on [2] for time-domain models’ training.
However, instead of multi-period and multi-scale discrimi-
nators we use several identical discriminators that are based
on multi-scale discriminators but operate on the same resolu-
tions and have smaller number of weights (we reduce channel
number in each convolutional layer by the factor of 4). We

 



employ three losses, namely LS-GAN loss LGAN [10], fea-
ture matching loss LFM [1], and mel-spectrogram loss LMel

[2]:

L(θ) = LGAN (θ) + λfmLFM (θ) + λmelLMel(θ) (2)
L(φi) = LGAN (φi), i = 1, . . . , k. (3)

where L(θ) denotes loss for generator with parameters θ,
L(φi) denotes loss for i-th discriminator with parameters
φi (all discriminators are identical, except initialized differ-
ently). In all experiments we set λfm = 2, λmel = 45,
k = 3.

4. EXPERIMENTS

All training hyper-parameters and implementation details will
be released with source codes.

4.1. Data

Bandwidth extension We use publicly available dataset
VCTK [11] (CC BY 4.0 license) which includes 44200
speech recordings belonging to 110 speakers. We exclude
6 speakers from the training set and 8 recordings from the ut-
terances corresponding to each speaker to avoid text level and
speaker-level data leakage to the training set. For evaluation,
we use 48 utterances corresponding to 6 speakers excluded
from the training data. Importantly, the text corresponding to
evaluation utterances is not read in any recordings constitut-
ing training data.
Speech denoising We use VCTK-DEMAND dataset [12]
(CC BY 4.0 license) for our denoising experiments. The train
sets (11572 utterances) consists of 28 speakers with 4 signal-
to-noise ratio (SNR) (15, 10, 5, and 0 dB). The test set (824
utterances) consists of 2 speakers with 4 SNR (17.5, 12.5, 7.5,
and 2.5 dB). Further details can be found in the original paper.

4.2. Evaluation

Objective evaluation We use conventional metrics WB-
PESQ [13], STOI [14], scale-invariant signal-to-distortion
ratio (SI-SDR) [15], DNSMOS [16] for objective evaluation
of samples in the SE task. In addition to conventional speech
quality metrics, we considered absolute objective speech
quality measure based on direct MOS score prediction by a
fine-tuned wave2vec2.0 model (WV-MOS), which was found
to have better system-level correlation with subjective quality
measures than the other objective metrics1.
Subjective evaluation We employ 5-scale MOS tests for
subjective quality assessment. All audio clips were normal-
ized to prevent the influence of audio volume differences on
the raters. The referees were restricted to be english speakers
with proper listening equipment.

1https://github.com/AndreevP/wvmos

4.3. Bandwidth Extension

In our bandwidth extension experiments, we use recordings
with a sampling rate of 16 kHz as targets and consider three
frequency bandwidths for input data: 1 kHz, 2kHz, and 4 kHz.
The models are trained independently for each bandwidth.
The results and comparison with other techniques are out-
lined in Table 1. Our model HiFi++ provides a better tradeoff
between model size and quality of bandwidth extension than
other techniques. Specifically, our model is 5 times smaller
than the closest baseline SEANet [17] while outperforming it
for all input frequency bandwidths. In order to validate the su-
periority of HiFi++ over SEANet in addition to MOS tests we
conducted pair-wise comparisons between these two models
and observe statistically significant dominance of our model
(p-values are equal to 2.8 · 10−22 for 1 kHz bandwidth, 0.003
for 2 kHz, and 0.02 for 4 kHz for the binomial test).

Importantly, these results highlight the importance of
adversarial objectives for speech frequency bandwidth exten-
sion models. Surprisingly, the SEANet model [17] appeared
to be the strongest baseline among examined counterparts
leaving the others far behind. This model uses adversarial
objective similar to ours. The TFilm [18] and 2S-BWE [4]
models use supervised reconstruction objectives and achieve
very poor performance, especially for low input frequency
bandwidths.

4.4. Speech Enhancement

The comparison of the HiFi++ with baselines is demonstrated
in the Table 2. Our model achieves comparable performance
with state-of-the-art models VoiceFixer [3] and DB-AIAT
[19] counterparts while being dramatically more computa-
tionally efficient. Interestingly, VoiceFixer achieves high sub-
jective quality while being inferior to other models according
to objective metrics, especially to SI-SDR and STOI. Indeed,
VoiceFixer doesn’t use waveform information directly and
takes as input only mel-spectrogram, thus, it misses parts of
the input signal and is not aiming at reconstructing the origi-
nal signal precisely leading to poor performance in terms of
classic relative metrics such as SI-SDR, STOI, and PESQ.
Our model provides decent relative quality metrics as it ex-
plicitly uses raw signal waveform as model inputs. At the
same time, our model takes into account signal spectrum,
which is very informative in speech enhancement as was il-
lustrated by the success of classical spectral-based methods.
It is noteworthy that we significantly outperform the SEANet
[7] model, which is trained in a similar adversarial manner
and has a larger number of parameters, but does not take into
account spectral information.

An interesting observation is the performance of the
MetriGAN+ model [6]. While this model is explicitly trained
to optimize PESQ and achieves high values of this metric,
this success does not spread on other objective and subjective
metrics.

 



Table 1. Bandwidth extension results on VCTK dataset. * indicates re-implementation.

BWE (1kHz) BWE (2kHz) BWE (4kHz)

Model MOS
WV-
MOS MOS

WV-
MOS MOS

WV-
MOS

# Param
(M)

Ground truth 4.62± 0.06 4.17 4.63± 0.03 4.17 4.50± 0.04 4.17 -

HiFi++ (ours) 4.10± 0.05 3.71 4.44± 0.02 3.95 4.51± 0.02 4.16 1.7
*SEANet [17] 3.94± 0.09 3.66 4.43± 0.05 3.95 4.45± 0.04 4.17 9.2
VoiceFixer [3] 3.04± 0.08 3.21 3.82± 0.06 3.50 4.34± 0.03 3.77 122.1
*2S-BWE (TCN) [4] 2.01± 0.06 2.34 2.98± 0.08 3.07 4.10± 0.04 3.96 2.7
*2S-BWE (CRN) [4] 1.97± 0.06 2.17 2.85± 0.04 3.16 4.27± 0.05 4.05 9.2
TFiLM [18] 1.98± 0.02 1.65 2.67± 0.04 2.27 3.54± 0.04 3.49 68.2

input 1.87± 0.08 0.39 2.46± 0.04 1.74 3.36± 0.06 3.17 -

Table 2. Speech denoising results on Voicebank-DEMAND dataset. * indicates re-implementation.

Model MOS WV-MOS SI-SDR STOI PESQ DNSMOS
# Par
(M)

# MACs
(G)

Ground truth 4.46± 0.05 4.50 - 1.00 4.64 3.15 - -

DB-AIAT [19] 4.40± 0.05 4.38 19.4 0.96 3.27 3.18 2.8 41.8
HiFi++ (ours) 4.31± 0.05 4.36 17.9 0.95 2.90 3.10 1.7 2.8
VoiceFixer [3] 4.21± 0.06 4.14 -18.5 0.89 2.38 3.13 122.1 34.4
DEMUCS [20] 4.17± 0.06 4.37 18.5 0.95 3.03 3.14 60.8 38.1
*SEANet [17] 4.00± 0.06 4.19 13.5 0.92 2.36 3.05 9.2 4.50
MetricGAN+ [6] 3.98± 0.06 3.90 8.5 0.93 3.13 2.95 2.7 28.5

Input 3.45± 0.07 2.99 8.4 0.92 1.97 2.53 - -

4.5. Ablation Study

To validate the effectiveness of the proposed modifications,
we performed the ablation study of the introduced modules
SpectralUNet, WaveUNet and SpectralMaskNet. For each
module, we consider the architecture without this module
with increased capacity of HiFi generator part to match the
size of the initial HiFi++ architecture.

The results of the ablation study are shown in Table 3,
which reveal how each module contributes to the HiFi++ per-
formance. We also compare against vanilla HiFi generator
model which takes mel-spectrogram as the only input. The
structure of the vanilla HiFi generator is the same as in V 1 and
V 2 versions from HiFi-GAN paper, except the parameter ”up-
sample initial channel” is set to 256 (it is 128 for V 2 and 512
for V 1). We can see that WaveUNet and SpectralMaskNet are
essential components of the architecture, as their absence no-
tably degrades the model performance. SpectralUNet has no
effect on quality of SE and minor positive effect on BWE (sta-
tistical significance of improvement is ensured by pairwise
test). However, since we match the number of parameters for
ablation models with HiFi++, this positive effect comes at no
cost, thus, it is useful to include SpectralUNet into generator
architecture.

Table 3. Ablation study results.

BWE (1kHz) SE

Model MOS MOS

Ground truth 4.50± 0.06 4.48± 0.05

Baseline (HiFi++) 3.92± 0.04 4.27± 0.04
w/o SpectralUNet 3.83± 0.06 4.26± 0.05
w/o WaveUNet 3.46± 0.06 4.19± 0.03
w/o SpectralMaskNet 3.51± 0.06 4.17± 0.05
vanilla HiFi 3.42± 0.05 4.17± 0.04

input 1.69± 0.05 3.51± 0.06

5. CONCLUSION

In this work, we introduce the universal HiFi++ framework
for bandwidth extension and speech enhancement. We show
through a series of extensive experiments that our model
achieves results on par with the state-of-the-art baselines on
BWE and SE tasks. Remarkably, our model obtains such
results being much more effiecient (in some cases by two
orders of magnitude) than existing counterparts.
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